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This paper deals with the stability analysis of an axially symmetric liquid metal flow
driven by a rotating magnetic field in a cylinder of finite dimensions. The limit of
linear stability with respect to axially symmetric perturbations is found for diameter-
to-height ratios between 0.4 and 1. This oscillatory instability is shown to be different
from the expected Taylor–Görtler vortices. Several linearly unstable steady solutions
are found close to the stable basic state. It is shown that small finite-amplitude
perturbations in the form of Taylor–Görtler vortices give rise to instability in the
linearly stable regime.

1. Introduction
An example of a rotating magnetic field (RMF) is the field generated in an

induction motor. Obviously, a conducting liquid immersed in such a field follows the
field rotation. Besides the primary azimuthal rotation, a secondary meridional flow is
generated by the imbalance of the centrifugal force and the radial pressure gradient
near the horizontal walls (Davidson 1992).

The stability of the flow driven by a rotating magnetic field in an infinite cylinder
with no meridional recirculation was considered by Richardson (1974). The critical
forcing parameter for the onset of the Taylor–Görtler type instability was obtained.
The stability of the RMF-driven flow in a finite length cylinder is particularly
important for various applications in semiconductor crystal growth techniques. The
rotating magnetic field was proposed as a tool to eliminate the practically unavoidable
thermal asymmetry and to control the heat and dopant transfer in such processes
(Gelfgat et al. 1992). In this context the stability threshold marks the upper limit of
the control possibilities since an oscillating flow causes inhomogeneity of the crystal
grown (Hurle 1994). Therefore, this stability question has received wide interest in the
crystal growth and magnetohydrodynamic applications community.

Different numerical simulations, e.g. by Gelfgat, Priede & Sorkin (1991), Kaiser
& Benz (1998), Marty et al. (1999), Barz et al. (1997), Mößner & Gerbeth (1999),
have shown that for aspect ratios around unity the near-critical basic flow is marked
by a strong meridional recirculation and an almost rigidly rotating core, separated
from the rigid walls by thin boundary layers. The vertical side layer of such a flow
is considerably thiner than in the infinite cylinder case considered by Richardson
(1974). Therefore it is not surprising that the Taylor–Görtler type instability sets in
at a considerably stronger forcing than follows from Richardsons’ analysis. However,
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different numerical simulations failed to reproduce quantitative results that agreed
even in the leading digit. Hence, the questions arise: What is behind such big
discrepancies; and what is the actual stability limit? The objective of our investigation
is to answer these questions.

The previous investigations, referred to numerical integration of the time-depend-
ent solution and the critical parameter was determined as the limit when oscillatory
solutions were obtained. Since these methods did not reproduce reliable results a more
accurate and correct approach is needed. We approximate the solution by a set of
functions constructed from orthogonal Chebyshev polynomials. The steady solution
is found and the spectrum of the linearized problem is evaluated numerically for a
continuously increasing forcing parameter.

The main result of the linear stability analysis is that the critical perturbation
does not represent the Taylor–Görtler vortex instability reported before. However,
our investigation reveals that there are unstable states very close to the linearly
stable basic flow corresponding to a small-amplitude perturbation in the form of
Taylor–Görtler vortices. The estimated minimum amplitude of such an unstable finite
perturbation shows that the experimental observation of a linear instability would
require a very high accuracy.

Section 2 introduces the mathematical problem. Numerical techniques are briefly
described in § 3. Section 4 contains the main results, which are discussed in § 5. The
conclusions are given in § 6.

2. Formulation of the problem
The axially symmetric flow of an electrically conducting incompressible Newtonian

fluid with kinematic viscosity ν, electrical conductivity σ in a cylinder of radius R0 and
height 2H0 is considered. The flow is driven by a uniform magnetic field of induction
B0 rotating in a plane z = const with a constant angular frequency ω. The induced
magnetic body force has an axially symmetric mean part and a three-dimensional
part oscillating with double frequency 2ω. The effect of the oscillating force part
has recently been investigated by Martin Witkowski & Walker (1999). Our model
of the magnetic force considers low-frequency and low-induction conditions, hence
taking into account only the time-averaged part. The low-frequency approximation
requires a skin depth much larger than the radius of the cylinder (ωσµ)−1/2 � R0,
where µ is the magnetic permeability of the fluid. The low-induction condition implies
that the flow does not influence the driving magnetic body force. This is fulfilled
by ω � Ω0 (Moffatt 1965), where Ω0 is the characteristic angular velocity of the
resulting flow. This condition can be expressed in terms of the field characteristics

(Priede 1993): Ha2 � Re
1/2
ω , where Ha = (σ/(2ρν))1/2B0H0 is the Hartmann number

and Reω = ωH2
0/ν is a Reynolds number corresponding to the field rotation. We

assume Ha2 � 1 in our investigation, for which the condition above is satisfied if
Reω > 1. Once the low-induction condition is satisfied the axial symmetry follows
from the estimate u′/u ∝ Ω0/ω derived by Davidson & Hunt (1987). Here u′/u
denotes the relative amplitude of three-dimensional oscillations due to the oscillating
part of the driving force.

An analytical solution can be written for the averaged magnetic body force under
these conditions (Gorbachev, Nikitin & Ustinov 1974). It has only an azimuthal
component, which can be presented in the form Fφ = 0.5σωB2

0r f(z, r), where the
shape function f(z, r) reflects the influence of the finite length of the cylinder. The



Stability of magnetically driven swirling flow 409

shape function

f(z, r) = 1− R0

r

∞∑
k=1

2J1(λkr/R0)

(λ2
k − 1)J1(λk)

cosh (λkz/R0)

cosh (λkH0/R0)
(2.1)

is zero at the endwalls and contains only even terms of the radial coordinate power
expansion. Here J1(x) is the Bessel function of the first kind and λk are the roots of
J ′1(x) = 0.

The problem is considered in stream function and vorticity formulation. Let us
introduce variables Ω, H and W as follows:

vφ(z, r) = Ω(z, r)r, ψ(z, r) = −0.5r2H(z, r), w(z, r) = W (z, r)r, (2.2)

where w(z, r) is the azimuthal vorticity component:

w(z, r) = eφ · (∇× v), (2.3)

and ψ(z, r) is the stream function of the axially symmetric meridional flow:

v = −∇×
(ψ
r
eφ

)
, (2.4)

with v = vrer + vzez . The velocities of the meridional flow v are expressed as follows:

vz = H + 0.5r
∂H

∂r
, vr = −0.5r

∂H

∂z
. (2.5)

These definitions of Ω, W and H can also be treated as an extension of the von
Kármán similarity variables (see the review by Zandbergen & Dijkstra 1987) to a
laterally confined flow. Using the scales ν/H0, H

2
0/ν and H0 or R0 for velocity, time,

and axial or radial coordinate, respectively, the Navier–Stokes equation and equation
(2.3) for the functions Ω, W and H can be written

∂Ω

∂t
+N(Ω)− ∂H

∂z
Ω =L(Ω) + Tam f(z, r), (2.6)

∂W

∂t
+N(W )− ∂Ω2

∂z
=L(W ), (2.7)

L(H) + 2W = 0, (2.8)

where

L =
1

R2

1

r3

∂

∂r
r3 ∂

∂r
+

∂2

∂z2
, N =

(
H +

r

2

∂H

∂r

)
∂

∂z
− r

2

∂H

∂z

∂

∂r
.

The so-called magnetic Taylor number Tam = ReωHa
2 = ωσB2

0H
4
0/(2ν

2ρ) and the
aspect ratio R = R0/H0 are the two governing parameters of the problem. The different
scales for the axial and radial coordinates result in the convenient computational
domain [−1:1]× [0:1]. The cylinder radius was traditionally used for deriving velocity
and time scales in previous investigations. Our choice of the cylinder height is
motivated by the fact that only the radial part of the linear operatorL then contains
the aspect ratio in (2.6)–(2.8).

The no-slip boundary conditions for equations (2.6)–(2.8) are

Ω(±1, r) = Ω(z, 1) = 0, (2.9)

H(±1, r) = H(z, 1) = 0,
∂H

∂z
(±1, r) =

∂H

∂r
(z, 1) = 0. (2.10)
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3. Numerical techniques

3.1. Spectral approximations

We express the steady solution of the problem (2.6)–(2.10) via base functions con-
structed from the orthogonal Chebyshev polynomials Tn(x) to meet the boundary
and symmetry conditions

Ω(z, r) =

Nz∑
i=0

Nr∑
j=0

Ωi jG2i(z)G2j(r), H(z, r) =

Nz∑
i=0

Nr∑
j=0

Hi jH2i+1(z)H2j(r), (3.1)

where Gn(x) = Tn(x)− Tn+2(x) and

Hn(x) = Tn(x)− 2
n+ 2

n+ 3
Tn+2(x) +

n+ 1

n+ 3
Tn+4(x)

satisfy Gn(±1) = 0 and Hn(±1) = H ′n (±1) = 0, respectively (cf. equation 18 in Gelfgat
& Tanasawa 1994). The body force is an even function of the axial coordinate
z and the boundary conditions are symmetric. Hence, the steady angular velocity
distribution Ω is an even and H is an odd function of z as follows from (2.6)–(2.8).
The approximation (3.1) was used to find the steady solution. Therefore the symmetry
of the problem with respect to the mid-plane z = 0 is taken into account in (3.1).
Concerning the flow stability, however, the steady solution can become unstable with
respect to an anti-symmetric perturbation as well:

Ω′(z, r) =

Nz∑
i=0

Nr∑
j=0

Ω′i jG2i+1(z)G2j(r), H ′(z, r) =

Nz∑
i=0

Nr∑
j=0

H ′i jH2i(z)H2j(r). (3.2)

Alternatively the time-dependent solution is sought in standard Chebyshev tau
form:

Ω(z, r, t) =

Mz∑
i=0

Mr∑
j=0

gi j(t)Ti(z)T2j(r), W (z, r, t) =

Mz∑
i=0

Mr∑
j=0

wi j(t)Ti(z)T2j(r),

H(z, r, t) =

Mz∑
i=0

Mr∑
j=0

hi j(t)Ti(z)T2j(r).

 (3.3)

including even and odd modes of the axial coordinate expansions to allow vertical
symmetry breakdown due to the instability.

The axial symmetry condition is satisfied by including only even radial coordinate
modes in expansions (3.1)–(3.3). These expansions satisfy the conditions usually
applied at the axis (vφ = 0, vr = 0, ∂vz/∂r = 0) as it is seen from (2.2) and (2.5). This
simple approach seems not to have been widely employed and, therefore, we provide
a proof. If a scalar function F(x, y) can be expanded in a coordinate power series
(which means that the function is infinitely differentiable) for x2 +y2 6 1 and satisfies
the axial symmetry condition F(x, y) = F(−x,−y) then each of its power expansion
terms anmx

nym must also satisfy this condition. Consequently, either n+ m is an even
number or anm = 0. Recalling polar coordinates x = r cosφ, y = r sinφ it follows
that the expansion of function F contains only even powers of r (J. Priede, private
communication). Similarly it can be shown that an expansion of an axially symmetric
vector function f(x, y) = (fx, fy) = −f(−x,−y) contains only odd powers of r.
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3.2. Steady solution and linear stability

The steady solution was found by the weighted residual procedure. We substituted
(3.1) in (2.6)–(2.8) and required the residual to be orthogonal to each T2i+p(z)T2j(r)
for i = 0, 1 . . . , Nz; j = 0, 1 . . . , Nr; p = 0 or p = 1 for equations (2.6) or (2.7), (2.8),
respectively. This leads to a set of nonlinear equations of the form

Aẋ = Lx+N(x) + F , (3.4)

where A is the so-called mass matrix. The steady solution x0 of (3.4) was found by
the Newton method through successive iterative improvements.

Taking into account the vertical symmetry of the problem (2.6)–(2.10), the dynamical
equations for even and odd axial coordinate modes decouple in the vicinity of the
symmetric steady state. On inverting A, the dynamical system

u̇ = Ju (3.5)

follows for the small perturbation u = x−x0 of appropriate symmetry containing even
angular velocity and odd stream function modes of the axial coordinate expansion,
where J = A−1(L+ (∂N/∂x)|x0

) is the Jacobi matrix. Similarly, the dynamical system
for the opposite vertical symmetry perturbation u′ (3.2) can be obtained in the form
u̇′ = J ′u′. The sign of the real part of the dominant eigenvalue λ = λr + iλi of the
matrices J and J ′ determines if the steady solution is linearly stable or not. The
eigenvalue problem was solved using routine dgeevx from the linear algebra package
lapack.

3.3. Time-dependent solution

Alternatively, we solve the problem (2.6)–(2.10) by numerically integrating in time.
The second-order implicit time discretization of (2.6) at moment tn+1 is written

3Ωn+1 − 4Ωn + Ωn−1

2∆t
=L(Ωn+1) + 2qn − qn−1, (3.6)

where q includes the body force and the convective term (Lopez & Shen 1998). This
leads to a Helmholtz type equation for angular velocity at each time step. Employing
the Chebyshev tau approximation (3.3), a set of linear algebraic equations follows for
Ωn+1
i j in the matrix form LzΩ−ΩLr − 1.5/∆tΩ = Q , where matrices Lz and Lr stand

for axial and radial discrete presentations of the diffusive operator L, respectively.
This set was solved by separating the radial dependence using the diagonalization
technique and fast factorization in the axial direction (Canuto et al. 1988).

The absence of explicit boundary conditions for the vorticity is compensated
by double conditions for the stream function (2.10). This fourth-order problem was
decoupled following Auteri & Quartapelle (1999). A brief description of the procedure
is given in the Appendix.

The nonlinear terms were evaluated pseudo-spectrally by projecting the solution to
real space values on the Gauss–Lobato mesh by means of the fast Fourier transform.
The ‘3/2 rule’ was used to eliminate the aliasing error (Canuto et al. 1988).

3.4. Numerical tests

We tested the numerical techniques by evaluating the relative difference between
numerical solutions of different spatial resolution. The steady solutions obtained by
the Newton method (§ 3.2) and the steady states of the time-dependent solution (§ 3.3)
were examined. The time-dependent solution was assumed steady when the relative
variation of its leading decomposition modes g0 0(t), h1 0(t) was less than 10−9 during
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Figure 1. The scaled error of azimuthal velocity (solid lines), stream function (dashed lines) and
the dominant eigenvalue (thick line) versus spatial resolution for (a) steady time-dependent solution
and (b) direct steady solution; R = 1, Tam = 0.4 × 104. Symbols � � and ∗ mark the maximum
absolute error, the norm of the error and the error of the maximum value, respectively; + mark
results from fidap in terms of maximum absolute error; dash-dotted and dotted lines correspond
to axial and radial velocity, respectively.

the characteristic dimensionless time τ0 = Ω
−1/2
0 . The steady time-dependent solution

with a spatial resolution (Mz = 108, Mr = 54) was used as a reference state. We
considered a test case with a moderate forcing Tam = 0.4× 105 and the aspect ratio
R = 1. The Reynolds number of the primary rotation was Re = max (vφ(z, r)) = 391.1
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Figure 2. Steady solution near the linear stability threshold: (a) angular velocity isolines with a
step 150; (b) streamlines of the meridional flow with step 2; Tam = 1.6× 105, R = 1.

and the maximum stream function value was ψ0 = max (ψ(z, r)) = 8.845, respectively.
Additionally we solved the test problem by the finite element method implemented in
the commercial fluid dynamics program fidap. Biquadratic quadrilateral elements of
third-order spatial approximation were used.

Figure 1 depicts the solution convergence in terms of the maximum absolute error
max |vφ(z, r)− vrefφ (z, r)|/Reref or max |ψ(z, r)− ψref(z, r)|/ψref0 , the error norm

‖∆vφ‖ =


∫
V

(vφ − vrefφ )2 dV∫
V

(vrefφ )2 dV


1/2

or ‖∆ψ‖ =


∫
V

(ψ − ψref)2 dV∫
V

(ψref)2 dV


1/2

and the error of the maximum value |max (vφ(z, r))/Reref−1| or |max (ψ(z, r))/ψref0 −1|
depending on the spatial resolution. Here vrefφ or ψref stand for the reference distri-

butions and Reref or ψref0 are the corresponding maximum values. The spatial reso-
lution was defined as the number of unknowns per variable per coordinate, that is
N = (Nz + 1) = (Nr + 1) for the direct steady solution and N = (Mz/2 + 1) = (Mr + 1)
for the steady time-dependent solution. The error of the real part of the dominant
eigenvalue is depicted in figure 1(b) with the reference value the N = 29 resolution
steady solution.

4. Results
4.1. Basic steady solution

The steady solution in the near-critical regime has an almost rigidly rotating core
(figure 2) separated from the endwalls by pronounced horizontal boundary layers.
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R Nz ×Nr Tacrm × 10−5 λcri R Nz ×Nr Tacrm × 10−5 λcri

1 42× 16 1.605 1632 0.5 56× 16 4.7341 2890
46× 12 1.616 1643 60× 12 4.7427 2895.5
46× 16 1.6359 1658.2 60× 16 4.7433 2894.6
46× 20 1.6358 1659.0 60× 20 4.7428 2894.4
50× 16 1.6361 1659.1 64× 16 4.7434 2894.7

Table 1. The convergence of the critical parameters.

R Tacrm × 10−5 λcri λ̃r Recr

1 1.636 1659 −26.2 1117
0.93 1.690 1681 −29.9 1068
0.85 1.842 1759 −32.4 1039
0.75 2.209 1945 −31.0 1034
0.67 2.707 2178 −24.2 1049

0.55 4.009 2711 −0.4 1085
0.5 4.743 2895 −18.6 1074
0.4 8.366 3804 −23.1 1177

Table 2. The critical parameters for variable aspect ratio.

These boundary layers have a self-similar spatially oscillating pattern. The corre-
sponding model problem concerns a fluid rotating over an infinite, stationary disc
(Davidson 1992). This model problem was first considered by Bödewadt (1940). A
self-similar rotating boundary layer is sometimes referred to as an Ekman layer. We
follow the terminology (e.g. Lingwood 1997) distinguishing different reference prob-
lems. Therefore we refer to the horizontal boundary layer as the Bödewadt layer. The
basic solution is marked by a smooth side layer and one pair of meridional vortices
(figure 2).

The dominant eigenvalue was evaluated for a gradually increasing magnetic Taylor
number. The convergence of the dominant eigenvalue was verified at each step. The
critical Taylor number Tacrm was found as the root of λr(Tam) = 0. The number of
axial decomposition modes required rapidly grew with increasing magnetic Taylor
number while the necessary number of radial modes was constant Nr = 16. Thus,
46×16 modes were necessary to evaluate the critical parameters within 0.1% estimated
accuracy for R = 1 (table 1). The analysis in a cylinder of doubled height R = 0.5
required the even higher axial resolution of Nz = 60 modes and the Newton algorithm
did not converge for Nz 6 52. Table 2 summarizes the linear instability results for
aspect ratios 0.4 6 R 6 1.

We found that the critical perturbation had symmetry of the basic solution for
R > 0.55. The anti-symmetric perturbations first became unstable in an elongated
cylinder with R 6 0.55. The dominant eigenvalue of the linearly stable half-spectrum
(i.e. that of the opposite symmetry with respect to the most unstable perturbation) is
denoted by λ̃r in table 2. The critical perturbation for R = 1 and R = 0.5 is shown in
figure 3.

4.2. Other steady solutions

Depending on the initial approximation several additional steady solutions can be
found for certain ranges of forcing. We detected these solutions by varying the spatial
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Figure 3. The critical perturbation of azimuthal velocity (a, c) and stream function (b, d) for R = 1
(a, b) and R = 0.5 (c, d). The upper part of each plot depicts the perturbation amplitude. Isolines are
plotted with a step 0.1, 3× 10−3, 0.05 and 3× 10−3 starting from 0.02, 3× 10−4, 0.01 and 3× 10−4

for (a–d), respectively. The lower part of each plot depicts the zero isoline of the perturbation for
phase shift 0, π/4, π/2 and 3π/4 with solid, dash-dotted, dashed and dotted lines, respectively.



416 I. Grants and G. Gerbeth

800

600

400

200

0

50 000

λr

Tam

100 000 150 000

1

2

3

Figure 4. The real part of the dominant eigenvalue versus the magnetic Taylor number for various
steady solution branches (R = 1). The basic solution is marked with �; symbols +, × and ∗
correspond to the steady solution branches 1–3, respectively. The dashed line corresponds to the
anti-symmetric spectrum of branch 1 solution.

resolution. An error in the form of the Taylor–Görtler vortices was characteristic for a
low-resolution steady solution. Taking such a solution as an initial guess we detected
three more branches of converging steady solutions. The convergence was verified to
0.3% accuracy in terms of the estimated error of the dominant eigenvalue. Figure
4 depicts the dependence of dominant eigenvalue of the corresponding linearized
systems on the magnetic Taylor number for R = 1. Linear stability analysis showed
that these solutions are monotonically unstable (λi = 0) with a high perturbation
growth rate. The dominant eigenvalue of the branch 1 solution (figure 5a–c) belonged
to the anti-symmetric part of the spectrum for Tam < 1.2 × 105. This solution was
linearly stable to symmetric perturbations for Tam < 1.06 × 105. The dominant
eigenvalues of the symmetric and anti-symmetric dynamical systems were almost
identical for two other steady solution branches, 2 and 3 depicted in figure 5(d–i).
Branch 2 was particularly close to the basic state. The distance between different
steady solution branches is depicted in figure 6. The additional steady solutions 1–3
did not converge for Tam < 0.38 × 105, Tam < 0.68 × 105 and Tam < 0.88 × 105,
respectively.

4.3. Time-dependent solutions

The direct steady solution of (3.4) in the near-critical state required a high spatial
resolution that came close to the limit of capabilities of the computers and algorithms
employed. The time-dependent solution allowed much higher resolution. We compared
the linear stability results in § 4.1 for R = 1 and R = 0.5 to dynamical parameters
of high-spatial-resolution time-dependent solutions that developed from the near-
critical steady states found directly with Tam ≈ Tacrm (1 ± 0.005). The basic state was
perturbed by an O(10−4) relative amplitude perturbation. We integrated the solutions
over some 25 oscillation periods with a temporal resolution of around 400 time steps
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Figure 5. The monotonically unstable steady solution branches: (a–c), (d–f) and (g–i) correspond
to branches 1–3, respectively; Tam = 1.0× 105, R = 1. Isolines of the angular velocity (a, d, g) and
the stream function (b, e, h) near the neutral point at the sidewall. The isoline step is 100 and 0.5
(1.0 in plot b) for the angular velocity and the stream function, respectively. Plots (c, f, i) depict
isolines of the difference in the angular velocity with respect to the basic state; the isoline step is
15. The negative isolines are depicted by dashed lines; the zero isoline is marked by a thick line.
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Figure 6. The distance ‖∆vφ‖ (solid lines) and ‖∆ψ‖ (dashed lines) from the basic steady solution
versus the magnetic Taylor number (R = 1). Symbols +, × and ∗ correspond to the steady solution
branches 1–3, respectively.

per period and approximated the discrete time history of the leading meridional flow
mode with a function B+A cos (λit+ϕ0)e

λrt by employing the nonlinear least-squares
Marquardt–Levenberg algorithm. The asymptotic standard error of both λi and λr
was less than 10−4. The dominant eigenvalue to be was calculated with three different
spatial resolutions for R = 1 and R = 0.5 with the maximum resolution 128× 48 and
144×48, respectively. The results allowed the leading eigenvalue to be evaluated within
0.1% estimated accuracy. The critical parameters found from these time-dependent
solutions were Tacrm = 1.635× 105, λcri = 1659 and Tacrm = 4.741× 105, λcri = 2894 for
R = 1 and R = 0.5, respectively. Similarly the real part of the dominant eigenvalue
λ̃r for the stable half-spectrum was evaluated as −26.2, −0.3 and −18.4 for R = 1,
0.55 and 0.5, respectively.

The numerical results in § 4.2 revealed a monotonically unstable steady solution 2
close to the stable basic state. This solution can also be treated as an unstable finite-
amplitude perturbation. We evaluated the dynamics of such a perturbation by taking
the steady solution 2 as an initial state. Variable spatial resolution of a maximum of
144× 48 modes was used. The numerical simulation showed that the steady solution
1 was established first if it was linearly stable with respect to symmetric perturbations
(plateau in figure 7a). Then the growing unstable anti-symmetric perturbation returned
the flow to the basic state. Figure 7(a) illustrates the history of switching between
these solutions for Tam = 1.0 × 105. If the steady branch 1 was also unstable to the
symmetric perturbations then the basic steady solution set in after a long period of
relatively big oscillations. Figure 7(b) illustrates this for Tam = 1.2 × 105. The figure
shows that the asymmetric part of the solution grew exponentially during the excited
regime and the exit from this regime was marked by the maximum of flow asymmetry,
reaching the characteristic scale of the flow oscillations.
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Figure 7. Time history of the perturbation norm developing from the unstable branch 2 (solid line):
(a) Tam = 1.0 × 105, (b) Tam = 1.2 × 105; R = 1. The characteristic relative value of the leading
asymmetric angular velocity mode g10/g00 is depicted by a dashed line.

5. Discussion
Two different spectral Chebyshev approaches were employed to investigate the

stability with respect to axisymmetric perturbations of a low-frequency low-induction
liquid metal flow driven by a rotating magnetic field in a cylindrical cavity. The
axial symmetry of the solution was enforced by including only radial coordinate
modes of appropriate symmetry. This avoided the exaggerated resolution near the
axis that would result from the standard approach by means of shifted polynomials
Ti(2r − 1), i = 0, 1, . . . (e.g. Lopez & Shen 1998). Note that the solution is marked by
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a particular smoothness at the axis (figures 2, 3). Since the basic solution has vertical
symmetry, the dynamical system for small perturbations separates into a symmetric
(having the symmetry of the basic solution) and an anti-symmetric part. This property
was used to reduce the size of the resulting eigenvalue problems. The methods were
tested by comparing the steady solution from both solution methods for a moderate
forcing with Tam = 0.4× 105. The steady solution was additionally compared to the
results of the commercial fluid dynamics program fidap. The numerical tests showed
a rapid convergence of the methods and an exponential convergence rate for the real
part of the dominant eigenvalue up to eight significant digits (figure 1). Comparison
of the results from the direct steady and time-dependent solution methods was
extensively performed where possible. This particular care was undertaken because a
high spatial resolution was necessary to obtain converging results in the near-critical
state. The main quantitative linear stability results, i.e. the critical magnetic Taylor
number and the angular oscillation frequency of the critical perturbation λcri , were
calculated within 0.1% estimated accuracy by both methods and the results agreed
at this accuracy.

The linear stability analysis showed that the basic solution becomes oscillatorily
unstable at Tacrm = 1.635× 105 for the aspect ratio R = 1 with the Reynolds number
Recr = 1117. The angular frequency λi of the instability is within a factor 2 equal
to the rotation frequency of the basic flow for aspect ratios between 0.4 6 R 6
1 (table 2, Ω0 ≈ Re/R). Hence, it remains much smaller than the frequency of
the field rotation under the low-induction condition. The critical Reynolds number
remains approximately constant at Recr ≈ 1100 with 7% tolerance in the range of
R considered. This qualitatively agrees with the observation by Grants (1997) and
Grants & Gelfgat (1999) that the onset of the axially symmetric instability occurs at
some approximately constant critical Reynolds number, calculated with the cylinder
length, for aspect ratios 0.25 6 R 6 1.0. This result was discussed in terms of the
side layer characteristics (its thickness and the core angular velocity) by employing an
analogy to the Taylor flow with a stationary outer cylinder. The present investigation
revealed that the linear instability is not of the Taylor–Görtler type. Hence, the
similarity to the Taylor flow does not explain the linear instability results concerning
the dependence of the critical Reynolds number on the aspect ratio. However, this
argument remains applicable for nonlinear instability as discussed below. The critical
perturbation is localized in the core and the Bödewadt boundary layers. Its amplitude
is relatively low in the side layer (except at the corner) with no Taylor vortices (figure
3). It is seen that the phase velocity of the critical perturbation has several rotation
centres, marked by crossing zero isolines at different phases. Like the basic flow, the
critical perturbation has a core and pronounced boundary layers at the endwalls. In
the core the critical perturbation appears as an inertial wave. The critical perturbation
does not have the self-similarity that is characteristic of the basic flow. These key
features also appear for the critical perturbation of opposite symmetry (R = 0.5,
figure 3c, d). We failed to obtain converging linear instability results for an elongated
cylinder with the aspect ratio R = 0.25. This can be explained by the presence of
unstable misleading steady solutions close to the basic steady state as discussed below.

We detected three additional monotonically unstable steady solution branches
characterized by one more pair of meridional recirculation vortices near the neutral
point at the sidewall. Evidently, such solutions can be observed only for a limited time.
However, their existence has some important consequences. The presence of several
steady solutions close to the basic state gives an indirect explanation for the fact
that a high axial resolution is needed. The additional solutions differ from the basic
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state by a relatively small correction localized in the side layer near the neutral point
(z = 0, r = 1), where the weight of the axial approximation is minimal. We observed
that solutions with poor spatial resolution preferred these ‘wrong’ steady states. This
leads to an argument against multi-grid approaches in related problems. Such an
additional steady state can also be treated as a perturbed basic solution. The solution
branch 2 is particularly close to the basic state (figure 6). Hence, the corresponding
finite perturbation is ‘small’. The results in figure 7 show that such a purely symmetric
perturbation causes a breakdown of the vertical symmetry. Thus, the flow due to
a ‘small’ perturbation is unstable. The distance to the branch 2 solution, therefore,
is an estimate of the minimum amplitude of the unstable finite perturbation. This
distance is 10−2 or 1.5 × 10−2 in terms of the azimuthal velocity or stream function
norm for Tam = 1.2 × 105, R = 1, respectively. This estimate can be improved. For
this purpose we performed several time-dependent simulations with a perturbed basic
state x0 + αx̃, where x̃ is some reference perturbation and α is a scale factor. The
reference perturbation was taken from the time history developing from branch 2 at
t = 0.023 (see figure 7b). This state is still close to the basic solution and at the same
time it is marked by a rapid growth of the perturbation amplitude. Several cases with
α > 1.0 × 10−4 are shown in figure 8(a). It is seen that there is a small perturbation
with a growing amplitude in the linearly stable regime. This is sometimes referred to
as ‘energetical instability’. Continuous large-amplitude oscillations with a subsequent
symmetry breakdown set in for α > 0.016 with the initial perturbation of norm
‖∆vφ‖ = 2.8 × 10−4 and ‖∆ψ‖ = 5.3 × 10−4. As is seen in figure 9 such an unstable
finite-amplitude perturbation is of the Taylor–Görtler type. Similarly we found that
there is a finite perturbation of the norm ‖∆vφ‖ = 2×10−3, ‖∆ψ‖ = 5×10−3 switching
the basic state to the unstable branch 1 for Tam = 0.7× 105. Note that an unsteady
flow example in figure 5 of Kaiser & Benz (1998) represents such an instability.
The form of the reported instability corresponds to the branch 1 steady solution
(cf. figure 5a, b). The unsymmetric location of the Taylor rolls is explained by the
vertical symmetry breakdown. This nonlinear instability can be discussed as follows.
Evidently, the side layer is prone to the Taylor–Görtler instability. The tangential jet
of the basic meridional flow, however, drives away and deforms the perturbation (this
jet is accelerating towards the horizontal wall) everywhere but near the neutral point
(z = 0, r = 1). If the perturbation amplitude is sufficient, the flow is attracted by the
steady solution 1 with a pair of additional vortices. The new steady state, however,
is unstable and the Taylor rolls are carried towards one of the horizontal boundary
layers and disappear. Meanwhile, a new pair is born at the neutral point due to
a small finite perturbation. Richardsons’ analysis for an infinite cylinder reveals a
linear Taylor–Görtler type instability. Hence, the minimum amplitude for this type
of instability tends to zero as the length of a finite cylinder increases. This agrees
qualitatively with the numerical time-dependent solution showing an unstable finite
size perturbation of amplitude ‖∆vφ‖ = 4× 10−7, ‖∆ψ‖ = 10−6 in the linearly stable
regime for R = 0.25 (figure 8b). This indirectly explains why the linear stability
analysis failed to produce converging results for this aspect ratio.

Under laboratory conditions the geometrical imperfections and vibrations introduce
a persistent source of finite-amplitude perturbations. Similarly the approximation
errors introduce a persistent source of finite perturbations in the numerical simulation.
To obtain an alternative estimate of the unstable perturbation amplitude we evaluated
the norm of the steady solution error with decreasing spatial resolution for Tam =
1.2 × 105, R = 1. We found that the steady solution is still available with the error
norm ‖∆vφ‖ = 2.5 × 10−3, ‖∆ψ‖ = 5 × 10−3. A solution with a lower resolution
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and a bigger error produced an unsteady flow with the characteristic Taylor–Görtler
vortices. The current investigation shows that this instability is expected to dominate
in systems of practical relevance. For example, the thickness of the crucible wall for a
2 in. gallium arsenide growth is given as (0.9 ± 0.4) mm, hence the radius is constant
to a 0.4% accuracy. At the same time, there is a finite size unstable perturbation of
characteristic amplitude 5 × 10−4 for Tam = 0.73Tacrm , which means instability can
appear in the linearly stable regime due to small geometrical imperfections of the
crucible.

The high sensitivity of the basic flow to the finite-amplitude Taylor–Görtler vortices
may indirectly explain the big differences in the previous numerical results from the
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Figure 9. Unstable finite size reference perturbation: Tacrm = 1.2 × 105, R = 1. The perturbation
norm is ‖∆vφ‖ = 2.8 × 10−4, ‖∆ψ‖ = 5.3 × 10−4 (α = 0.016, see also figure 8a). Isolines of (a) the
angular velocity with a step 0.2 and (b) the stream function with a step 0.005.

Finite differences or
Contribution control volumes Finite elements

Barz et al. (1997) 2.8
Gelfgat et al. (1991) 1.6†
Grants (1997) 2.0 0.52
Kaiser & Benz (1998) 0.545
Marty et al. (1999) 1.75
Mößner & Gerbeth (1999) 2.0

Table 3. Comparison of the critical magnetic Taylor number Tacrm × 10−5 for aspect ratio R = 1.0
by different authors. †Calculated for a free top surface.

time integration of the Navier–Stokes equation. It is seen in table 3 that the finite
difference or control volume methods produce critical values closer to the linear
instability limit while the weighted approximation finite element methods yield critical
values closer to the limit of global stability TaG that is shown to be TaGm < 0.7× 105

for R = 1. Results by Mößner & Gerbeth (1999) contradict this division since the
numerical techniques employed addressed the question of the convergence of the
steady solution rather than its stability.

The Bödewadt layers at the endwalls are linearly unstable with respect to three-
dimensional perturbations in the form of spiral waves. This type of instability was
examined experimentally by Savaş (1987) and theoretically by Lingwood (1997),
reporting the critical local Reynolds number Recrl ≈ 25 and Recrl = 21.6, respectively.
The local Reynolds number is defined as Recrl = (v∞l)/ν where v∞ is azimuthal velocity
in the core and l = (ν/Ω0)

1/2 is the characteristic boundary layer thickness. The critical
Reynolds number with respect to axially symmetric perturbations is Recr = 1117 with
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Ω0 ≈ 1350 for R = 1.0. The corresponding maximum local Reynolds number is

estimated as Rel = ReΩ
−1/2
0 ≈ 30, which exceeds the spiral instability threshold.

Note that the instability threshold of the self-similar Bödewadt solution is expected
to underestimate the critical value for the actual horizontal layer at r > 0.6. As
reported by Lingwood (1997) the decreasingly inflectional nature of the rotating layer
is accompanied by an increasingly stable flow. For example, the critical local Reynolds
number 507.4 is reported for the monotonic Kármán layer near a disc rotating below
a fluid at rest. The horizontal boundary layer completely loses its characteristic
spatially oscillating shape at the radial coordinate r ≈ 0.85 (see figure 2) where the
core azimuthal velocity reaches its maximum. If the radial coordinate r = 0.6 is taken
as an approximate limit where stability considerations of the Bödewadt solution
are still applicable to the horizontal layer, then the local Reynolds number here is
Rel = 21 for Tam = Tacrm . Hence, the aspect ratio R = 1 can be concluded to be an
estimate of the limit at which the axisymmetric instability still dominates over the
spiral instability of the horizontal layers.

The sensitivity of the flow suggests that the nonlinear instability originates from
the unsymmetric rotational oscillating part of the driving force. Under the u′/u � 1
condition the induced oscillating flow u′ decouples from the basic flow. The oscillating
flow is described by linear equations that are solved analytically (Martin Witkowski
& Walker 1999). The perturbation appears as the (v · ∇)u′ + (u′ · ∇)v term in the
Navier–Stokes equation, where the bar denotes averaging over the period of the
electromagnetic force oscillations. Here we assume that the frequency of any possible
instability remains much lower than the frequency of the field rotation. If so, the effect
can be considered in an axisymmetric approximation as a small linear correction. The
form of such a perturbation seems not to correspond to the Taylor rolls that probably
are the most unstable finite axisymmetric perturbation. Instead, the stability analysis
of a small perturbation due to a wavy sidewall promises more interesting results.

The present analysis does not consider three-dimensional perturbations. The ques-
tion on the transition from axisymmetric linear instability in an infinite cylinder to the
spiral instability of a horizontal layer remains open. Some other three-dimensional
instability in between cannot be excluded.

The estimate of the unstable finite perturbation indicates that a very low level of
imperfections and perturbations would be necessary to experimentally observe the
linear instability onset. This particularly restricts the use of probe methods for liquid
metal flow measurements in such an experiment. This estimate also suggests that
the instability due to finite-amplitude Taylor–Görtler rolls is expected to dominate
in practical applications. The uncertainty in real finite perturbations, therefore, hints
that the stability limit in a specific practical system can be reasonably determined
only experimentally in the system itself.

6. Conclusions
The axisymmetric liquid metal flow driven by a low-frequency low-amplitude ro-

tating magnetic field in a cylinder of height equal to its diameter becomes os-
cillatorily unstable to axisymmetric perturbations at the magnetic Taylor number
Tacrm = 1.635 × 105 with the angular frequency of oscillations λcri = 1659. The crit-
ical Reynolds number is to 7% tolerance constant, Recr ≈ 1100, for aspect ratios
0.4 6 R 6 1. The critical perturbation does not represent the Taylor–Görtler vortices
reported in previous numerical investigations. There are several additional unsta-
ble steady solutions in the linearly stable regime of the basic flow. The latter is
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attracted by such an unstable solution in the case of a small perturbation in the
form of Taylor–Görtler vortices. The minimum relative amplitude of the unstable
perturbation is estimated as 5 × 10−4 (R = 1, Tam = 0.73Tacrm ) and decreases as the
relative height of the cylinder increases. The results obtained explain contradictions in
previous numerical investigations and give a minimum accuracy estimate for further
theoretical or experimental studies.
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by anonymous reviewers. Financial support from Saxonian Ministry of Science and
Art under grant SMWK/4-7533-70-844-98/3 and Deutsche Forschungsgemeinschaft
under INK 18/B1-1 is gratefully acknowledged.

Appendix. Spectral approximation of vorticity boundary conditions

There are no physical boundary conditions for the vorticity. This lack is compen-
sated by two boundary conditions for the function H . We decoupled this fourth-order
problem following Auteri & Quartapelle (1999). The vorticity at the time step tn+1

should satisfy a Helmholtz equation, of the form (3.6). Initially, we solved for the
approximate vorticity W̃ n+1 with some approximate boundary conditions. Then, the
approximate stream function H̃n+1 with homogeneous Dirichlet boundary conditions
was evaluated solving the Poisson equation (2.8) in the same way as the Helmholtz
equation (3.6) was solved. This H̃n+1, of course, does not necessarily satisfy the Neu-
mann conditions. Thus, the task consists in finding a vorticity boundary condition
correction Ŵ n+1 satisfying a homogeneous Helmholtz type equation and such that
the corresponding Ĥn+1 adjusts the Neumann condition:

∂Ĥn+1

∂n

∣∣∣∣∣D = − ∂H̃n+1

∂n

∣∣∣∣D . (A 1)

Here ∂/∂n denotes the derivative in the direction of the external normal and D stands

for the domain edge. The ‘corresponding’ Ĥn+1 means a solution of (2.8) with zero
Dirichlet conditions:

L(Ĥn+1) = −2Ŵ n+1, Ĥn+1|D = 0.

Then the corrected solution is Wn+1 = W̃ n+1 + Ŵ n+1 and Hn+1 = H̃n+1 + Ĥn+1. The
correction Ŵ n+1 is the solution of the homogeneous Helmholtz equation. Therefore it
is completely determined by its trace, i.e. Mz +Mr modes of the boundary conditions.
It takes two steps to find Ŵ n+1. The preprocessing step includes solution of a
homogeneous Helmholtz equation for each unitary vector of the Ŵ basis. Then the
normal derivatives of the corresponding Ĥ fills matrix A in

ĥn = Aŵ. (A 2)

Here ĥn stands for the normal derivatives of the stream function correction Ĥ . Once
the matrix A is evaluated, it can be used at each time step to enforce (A 1) with the
vorticity boundary condition correction

ŵ = −A−1h̃n. (A 3)
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